

1

Acknowledgement of Country

We acknowledge the people who are the Traditional Custodians of the Land on which we work and study, and show respect to Elders past and present, and extend that respect to everyone present. I acknowledge the Darkinjung people who are the Traditional Custodians of the land on which this study took place.

Presentation overview

- Project aims and overview
- Wamberal Beach Study Site Review of previous studies
 - 2020 Storm erosion emergency response and data capture
- Seawall concept design options for Wamberal Beach
- Cost-benefit analysis of seawall options
- Assessing seawall impacts on beach amenity
- Sand nourishment for beach amenity
- Wamberal Beach Real-time Coastal Monitoring
- Next steps and opportunities

Project aim and overview

 Certified Gosford Beaches Coastal Zone Management Plan (CZMP, 2017) priority management issues with the primary objective:

"to protect and preserve the beach environments, beach amenity, public access and social fabric of the Open Coast and Broken Bay beaches while managing coastal hazard risks to people and the environment".

- Major actions recommended for Wamberal Beach from the CZMP (2017):
 - TW11 Terminal protection Council to action review, design and funding of terminal protection structure for Wamberal.
 - TW14 Investigate sources of sand and feasibility of beach nourishment for Wamberal Beach.
 - TW15 Beach nourishment coupled with a terminal revetment to increase buffer against storm erosion.

• CZMP did not include provisions for construction of a seawall

Project aim and overview

In May 2020, Manly Hydraulics Laboratory (MHL) in association with the Water Research Laboratory (WRL) of UNSW Sydney and Balmoral Group Australia (BGA) were commissioned by Central Coast Council to undertake the *Wamberal Terminal Coastal Protection Assessment*.

Series of Reports:

- 1. Review of previous studies
- 2. Coastal protection amenity assessment
- 3. Seawall concept design options
- 4. Sand nourishment investigation
- 5. Provision of coastal monitoring (online webpage)
- 6. Cost benefit analysis and distributional analysis of options

Available: https://www.yourvoiceourcoast.com/wamberalerosion NSW

Manly Hydraulics

5

3

Wamberal Beach - Study Site & Review of Previous Studies

- Fine to medium grained quartz sands
- Region of elevated claystone/siltstone (~400m, exposed at depths -2 to +1 m AHD during storms)
- Extends into dune substrate
- Other locations bedrock
 typically deeper

Wamberal Beach - Study Site & Review of Previous Studies

- A long history of coastal erosion and emergency response
- 1974 the Australian Army and SES undertook emergency rock and sandbag protection. Other materials also
- 1978 two houses lost one resulting in the Egger legal case

- Large storms threatening properties 1997, 2007 and 2016, 2020 with continued emergency response
- Ad-hoc and emergency materials placed on beach

Manly Hydraulics Laboratory

Wamberal Beach – July 2020 Storm erosion

- 54 residents evacuated for their personal safety.
- Hazardous rubble and debris were strewn across the beach
- Partial undermining residential buildings
- 2,400 tonnes of rock, over 2,000 tonnes of rock bags and 4,000 tonnes of sand. Total cost \$2.1M

Wamberal Beach – July 2020 Storm erosion

Wamberal Beach – July 2020 Storm erosion

- House-by house risk assessment _____
- Working with SES to inform evacuation
- X5 repeat drone surveys to monitor erosion scarp regression and dune slumping
- Mapping of existing materials / claystone buried in beach

Wamberal Beach – July 2020 Storm erosion

- House-by house risk
 assessment
- Working with SES to inform Evacuation
- X5 repeat drone surveys to monitor erosion scarp regression and dune slumping
- Mapping of existing materials / claystone buried in beach

Wamberal Beach – Toward a Long-Term Solution

- Review of 30+ studies (1980's to present) relevant to Wamberal beach coastal management
 - All studies recommend seawall (terminal protection) and sand nourishment as most viable options for Wamberal
 - Large scale sand nourishment constrained by the availability of an accessible sand source.
- Former Seabee Seawall detailed design (Lagoon to Lagoon) by WRL (1998) and EIS by MHL (2004)
 - > Adopted by Council in 2004, however funding could not be secured.
- Coastal Zone Management Plan (2017) > terminal protection coupled with sand nourishment

13

Seawall concept design options

Five Seawall concept designs

- Design parameters
- Concept design cross-sections
- Preliminary alignment
- Preliminary costings
- Advantages/disadvantages

Five concept design options:

- 1. Basalt Rock Revetment \$26.5M
- 2. Sandstone Rock Revetment \$25.0M
- 3. Vertical Seawall \$34.0M
- 4. Vertical Seawall with rock toe protection \$34.7M
- 5. Tiered Vertical Seawall with Promenade \$40.1M

Manly Hydraulics Laboratory

15

Five concept design options:

- 1. Basalt Rock Revetment \$26.5M
- 2. Sandstone Rock Revetment \$25.0M

17

Seawall concept design options

Five concept design options:

- 1. Basalt Rock Revetment \$26.5M
- 2. Sandstone Rock Revetment \$25.0M
- **3. Vertical Seawall** \$34.0M

Five concept design options:

- 1. Basalt Rock Revetment \$26.5M
- 2. Sandstone Rock Revetment \$25.0M
- 3. Vertical Seawall \$34.0M
- 4. Vertical Seawall with rock toe \$34.7M

19

Seawall concept design options

Five concept design options:

- 1. Basalt Rock Revetment \$26.5M
- 2. Sandstone Rock Revetment \$25.0M
- 3. Vertical Seawall \$34.0M
- 4. Vertical Seawall with rock toe protection \$34.7M
- 5. Tiered Vertical Seawall with Promenade \$40.1M

1. Basalt Rock Revetment

- Sloped rock revetment with 2 layers basalt primary armour. Wave return at crest
- Prelim cost: \$26.5M
- Pros: Lower \$, conventional, non-rigid, adaptable to SLR
- Cons: Larger footprint, higher encroachment, high impact on available beach width.
- E.g. Lennox head.

Belongil, Port Kembla

Manly Hydraulics Laboratory

21

Seawall concept design options

2. Sandstone Rock Revetment

- Sloped rock revetment with 2 layers sandstone
 primary armour. Wave return at crest
- Prelim cost: \$25.0M
- Pros: Lower \$, conventional, non-rigid, adaptable to SLR, sandstone aesthetics
- Cons: Larger footprint, higher encroachment, high impact on available beach width, rock armour durability
- E.g. Collaroy

3. Vertical Seawall

- Concrete panel vertical seawall with piled foundations, sheetpile scour protection, wave return
- Prelim cost: \$34.0M
- Pros: Smallest footprint, low encroachment and low impact on available beach width, adaptable to SLR
- Cons: Moderate to high \$, vertical relief visually imposing and public safety.
- E.g. Narrabeen,

Flynns Beach, South Cronulla Bondi

23

Seawall concept design options

4. Vertical Seawall with rock toe protection

- Concrete panel vertical seawall with piled foundations, non-rigid toe protection, wave return
- Prelim cost: \$34.7M
- Pros: Small footprint, non-rigid toe, low encroachment and low impact on available beach width, adaptable to SLR
- Cons: Moderate to high \$, vertical relief visually imposing and public safety.
- E.g. Narrabeen,

Flynns Beach, South Cronulla Bondi

5. Tiered Vertical Seawall with Promenade

- Tiered vertical wall, mid-level promenade, sloping backfill, piled foundations, wave return
- Prelim cost: \$40.1M
- Pros: enhanced access & amenity, broader community benefits, reduced vertical relief, adaptable to SLR, relatively low encroachment, existing rock reuse opportunities
- Cons: Highest cost, more complex detailed design, privacy consideration, public access management during storms.
- E.g. Newcastle

(City),

Wollongong (Blue Mile)

25

Seawall concept design options

Preliminary alignment: As far landward as practicable to minimise encroachment

Reviewed former Seabee Design as rear of structure for all options:

- Setback to existing buildings
- Relative to foredune
 erosion scarp
- Relative to characteristic shoreline curvature

Preliminary alignment: As far landward as practicable to minimise encroachment

All options aligned with common rear of structure alignment.

Reduced encroachment of vertical compared to sloped structures

- (0.7 m AHD contour, 1987 to present) Cadastral Boundary (Stephen Thorne and Associates, 2019) Preliminary Crest Alignment (rear of structure) **Concept Design Footprints** Option 1) Basalt Rock Revetment Option 2) Sandstone Rock Revetment Option 3) Vertical Seawall
 - Option 4) Vertical Seawall with Rock Toe
 - **Option 5) Tiered Vertical Seawall**
 - Previous Seabee Footprint (1998/2004) ----

27

Cost-benefit analysis of seawall options - Overview

- All options show positive BCR primarily driven by avoided loss of private property and land.
- Vertical wall options indicate highest BCR however relative differences are marginal and subject to sensitivity testing
 - Discount rates
 - Number of visitors
 - Promenade benefits
- > CBA an important tool but not all assessment criteria can be monetarised...

Seawall Option	NPV (\$M)	BCR
Basalt Rock Revetment	\$33.1	1.94
Sandstone Rock Revetment	\$33.2	1.95
Vertical Seawall	\$53.7	2.43
Vertical Seawall with rock toe	\$53.0	2.39
Tiered Vertical seawall with promenade	\$51.2	1.96
	NSW GOVERNMENT	Manly Hydraulic Laboratoi

- Seawall impacts on sandy beach a major concern for beachfront home owners and broader community raised during consultation
- Aspects of beach amenity :
 - Beach width impacts (WRL modelling)
 - o Surf amenity
 - Post-storm ad-hoc protection debris
 - Visual amenity
 - Foreshore access
 - o Safety

Assessing seawall impacts on beach amenity

Quantifying beach width impacts

- Hindcast dry beach width model
 - 10 year period 2010 2020
 - o Hourly wave/tide data
 - Hourly wave runup estimates from Mase Equation (R2%, Rmax)
 - Measured beach profile data (RTK-GPS, Drone, aerial lidar)
 - Dry beach width timeseries for existing beach and seawall scenarios
 - o X6 representative profile locations
- Calibrated against 10 months of hourly measured wave runup data from Wamberal Lidar Station.

Quantifying beach width impacts

Percentage of time less than a 5 m beach width:

- Existing beach (including ad-hoc rock protection): 1.4% to 3.3% (ie on average ~5-12 days/year)
- Basalt revetment: 6.8% to 9.5%
- Sandstone revetment: 8.7% to 12.8%
- Vertical seawall: 0.2% to 0.6%
- Tiered vertical seawall with promenade: 1.1% to 2.6%

31

Assessing seawall impacts on beach amenity

Surf amenity Impacts

- 91 seawall structures on sandy beaches were catalogued, predominantly in south-east Queensland and NSW. Catalogued criteria
 - Status as a World/National Surfing Reserve;
 - Prevalence of major surfing contests (regional, state, national, international)
 - o Prevalence of recreational surfing
 - Prevalence of surf life saving activities
 - o Prevalence of beach tourism
 - Publicised issues, particularly regarding beach amenity or surfing impacts

Assessing seawall impacts on beach amenity

Surf amenity Impacts

- 91 seawall structures catalogued for surfing activity and publicised adverse amenity impacts
- Up to 7 have known adverse publicity regarding impacts on beach amenity: Belongil, Brooms Head, Stockton, Collaroy-Narrabeen, Warilla Beach, Caseys Beach, Malibu (California).
- Common features:
 - Alignment more seaward (alongshore access issues)
 - · Often high underlying recession rates
 - Entry and exit hazards to/from the water
- Proposed seawalls at Wamberal unlikely to adversely impact in surf quality, undertaken in deeper waters.

End Erosion Impacts

- Lagoon to lagoon structure
- Difficult to quantify by conventional means > end regions influenced by lagoon entrance processes, bridge abutments and rocky foreshores.
- Unlikely to affect other developed areas along the beach.
- Specifications of termination subject to detailed design.

Assessing seawall impacts on beach amenity

Other amenity Impacts

- Post-storm ad-hoc protection debris
 - Opportunity Existing ad-hoc material removed during seawall construction
- o Visual amenity/safety
 - Vertical walls Large vertical relief visually imposing/safety concern where not buried
 - "Fitting in" with backshore topography
 - Benefit of tiered structure
- Foreshore access
 - Promenade: enhanced alongshore access before and after storms.

Seawall Concept Option	Percentage of time with less than 5 m available dry beach width (%) *	Encroachment into active beach and cross-shore impact	Available dry beach width impact	End erosion impact	Surf amenity impact	Post-storm ad-hoc protection debris on beach	Visual amenity Impacts	Foreshore access impacts	Safety Impacts	Overall beach amenity impact assessment			
Existing beach (including present ad-hoc rock protection)	1.4% to 3.3%	Average of ~5 to 12 days per year when beach is less than 5 m. Higher encroachment of ad-hoc protection in central region of beach.	Infrequent disruptions following major storms with narrow beach conditions.	Potential end effects at gaps in ad-hoc protection.	No adverse impacts identified	Emergency works 1974 to present, rock rubble fill, brickwork, concrete, rubber tyres, old septic tanks, failed timber structures, etc. Exposed and dislodged with storms.	Poor after storms when existing ad-hoc material exposed. Large unstable durie scarp.	Alongshore access inhibited after storms with large unstable dune scarp at access points.	Dangerous narrow beach conditions after storms. Risks trying to traverse ad-hoc protection encroaching into shoreline. Large unstable dure scarp.	As present – undesirable conditions particulary after storms			
				Impacts re	lative to exist	ing beach amenity							
Option 1: Basalt Rock Revetment	6.8% to 9.5%	Advense – Average of 24 to 34 days per year when beach is less than 5 m. Higher encroachment	Adverse – More frequent	Potential for minor added erosion when end	Potential for minor added erosion when end	Potential for minor added erosion when end	ad .		Moderate – Presence of large	Adverse – Alongshore access	Moderate - safety risks at	Moderate to high adverse impact	
Option 2: Sandstone Rock Revetment	8.7% to 12.8%	Adverse – Average of 32 to 47 days per year when beach is less than 5 m Higher encroachment.	conditions with narrow beach	conditions with of seawall is exposed to waves ^b	seawall is posed to vaves ^b		not buried ^d	inhibited more frequently	narrow beach sections	Moderate to high adverse impact			
Option 3: Vertical Seawall	0.2% to 0.6%	Beneficial – Average of 1 to 2 days per year when beach is less than 5 m. Reduced encroachment	Beneficial – Reductors in conditions with narrow baach Serviced Sigit reduction in conditions with narrow beach = provision of east	Beneficial – Reduction in	Beneficial - Reduction in	Minimal end effects expected due to landward alignment ^b	No adverse impact expected	Beneficial – Existing ad- hoc material removed during seawall construction	Moderate – Large vertical relief	Beneficial	Moderate – safety risks	Low to beneficial impact	
Option 4: Vertical Seawall with Rock Toe:	0.2% to 0.6%	Beneficial – conditions with Average of 1 to 2 days per year when beach is less than 5 m Reduced encroachment		th h Minimal end effects expected due to landward alignment ^b n in th t t esss	Minimal end effects expected due to landward alignment ^b		vith ch Minimal end effects expected due to landward alignment ^{to} 			visually imposing where not buried ^d	improve alongshore access	vertical relief 4	Low to beneficial impact
Option 5: Tiered Vertical Seawall with Promenade	1.1% to 2.6%	Slightly Beneficial – Average of 4 to 9 days per year when beach is less than 5 m Reduced encroachment										Beneficial – reduced vertical relief + opportunities for enhanced foreshore landscaping 5 *	Beneficial – slightly wider beach to improve alongshore access + provision of promenade access
^b Values defined by ^b Region of potential are subject to detaile ^c Does not consider to ^c Concept design cre ^c Design consideration ^c Also provides broad	R2% (the wave rumup e end effects are also in id design, other sources of debris at levels to be refined o ons to mitigate privacy for public amenity value	inceeded by 2% of waves) an fuenced by lagoon entrance (from eroded vegetated dune buring detailed design. Visual impacts on beachfront reside e of foreshore promenade.	d Rmax (the maximum processes, bridge abutn s and lagoon entrances, and safety amenity will nts are addressed in the	estmated wave runup rents and rocky foresh benefit from removal o Stage 3 Seawall Con) and averaged ores. Potential of ad-hoc protect cept Design Op	along the length of the beach t end effects are unlikely to affec tion and unstable dune scarps tions (MHL2780, 2021).	vetween lagoon entrances. It other developed areas a	ong the beach. Specifica	sons of termination des	ign at lagoon ends			

Overall amenity impact assessment of seawall options:

- Rock Revetment: Moderate to High
- Vertical Seawalls: Low (vertical relief issues)
- Tiered seawall with promenade: Low + added foreshore promenade amenity

Sand nourishment for beach amenity

- Volume Requirements to maintain present day sandy beach amenity:
 - a) Offsetting seawall encroachment (Rock Revetment Options Only, Upfront) Lagoon to lagoon: 250,000 to 270,000 m³
 - Lagoon to lagoon <u>+ Terrigal: 490,000 to 530,000 m³</u>
 - b) Design recession maintenance. SLR + underlying. (All Options, every 10 years) Lagoon to lagoon: 80,000 m³
 - Lagoon to lagoon + Terrigal: 140,000 m³

Sand nourishment for beach amenity Potential sand sources: Local and regional quarries > Lagoon entrances > Active foredune management Port and navigation dredging > Offshore dredging Metro tunnel spoils Legend NSW Figure 3.1

39

Sand nourishment for beach amenity

Overall sand nourishment assessment:

- Number of feasible sources however few of these offer sufficient capacity for upfront nourishment requirements in excess of around 50,000 m³.
- Larger volume sources subject to future viability and availability at the time of works.
- Seawalls with lower encroachment • impacts considered beneficial (lower upfront nourishment requirements)

Location	Total Resource Available	Estimated Overfill Factor *	Indicative unit cost (\$/m ³)	Constraints / Comments	Recommendation	
Local Quarries - Grants Rd Sand	~50,000 m ³ /y	1.3	50	 Supply limited due to high regional construction industry demand and limited resource availability Volume requires supplementing from other sources 	Further investigation recommended.	
Regional Quarries - Stockton	~200,000 m³/y	2 - 3	>100	 High cost due to haulage Supply limited due to high regional construction industry demand and limited resource availability 	Not recommended. (high cost)	
Wamberal and Terrigal Lagoon Entrance	43,000 m ³ (20,000 at Terrigal and 23,000 at Wamberal)	1	20 - 40	 Requires repeat entrance clearance program to maintain, Volume requires supplementing from other sources Maintains transfer of sand within Terrigal-Wamberal sediment compartment (i.e. beach replenshment) Variable volumes and sediment quality dependent on dredge campaign. Impacts on recreational area and amenity at entrances 	Further investigation recommended.	
Active foredune management	25,000 m ³	1.5 - 3	15 - 30	Requires repeat foredune maintenance program Disturbances to foredune ecology in Wamberal Lagoon Nature Reserve Volume requires supplementing from other sources Maintains transfer of sand within Terrigal-Wamberal sediment compartment (i.e. beach replementment)	Subject to detailed EIA in consultation with NPWS.	
Hunter River (South and North Arm)	Several million m ³	Unknown. Fine to medium grained sand	60 - 120	High cost due to haulage Potentially cheaper if undertaken as part of broader regional nourishment program	Subject to future viability. (potential high cost due to haulage)	
Brooklyn, Hawkesbury River	100,000 m ³	Unknown. Fine to medium grained sand	23 - 43	 Potentially cheaper if undertaken as part of broader regional nourishment program 	Not recommended. (sand required in source compartment)	
Swansea Channel	10,000 - 50,000 m ³ every 1-5 years with infrequent major dredging	2	45 - 80	 Likely exhausted by local sand requirements closer to the source 	Not recommended. (sand required in source compartment)	
Tuggerah Entrance	30,000 -80,000 m ³ /y every 1-2 years	Unknown. Fine to medium grained sand	40 - 60	 Likely exhausted by local sand requirements closer to the source 	Not recommended. (sand required in source compartment)	
Offshore dredging	Order of 10 million m ³	1 - 1.5	10 - 30	 Environmental concerns of Government and community Potentially cheaper costs (<\$10/m3) if undertaken as part of a broader regional nourishment campaign 	Subject to future viability. Further investigation recommended.	
Sydney tunnel spoils	Several million m ³	Unknown	<10	Low cost option Sand compatibility of spoils for nourishment purposes requires further investigation	Subject to future viability. Further investigation recommended.	

Wamberal Beach Real-time Coastal Monitoring

Coastal Monitoring Initiatives

- Trailcam installed & operating at Wamberal SLSC (WRL)
- CoastSnap station installed at Terrigal Dr (WRL)
- Fixed Lidar station installed & operating (24/7)
- Live Coastal Monitoring Webpage: live beach conditions (beach width, berm height, subaerial beach volume, wave runup, nearshore waves, coastal imaging)

Summary

- ✓ Seawall concept design options for Wamberal Beach
- ✓ Amenity impact assessment of options
- ✓ Sand nourishment investigation
- ✓ Cost-benefit analysis
- Seawall and sandy beaches can coexist with considered design that seeks to preserve (or enhance) beach amenity while protecting against the hazard.

Beach amenity impacts are to be evaluated throughout all phases of a seawall design from concept to construction to decommission.

45

Next Steps

Council's key criteria derived following review of technical reports, community consultation and Council's role in coastal management:

- located as far landward;
- · located wholly on private property where possible;
- constructed, owned, and maintained by property owners;
- narrowest footprint;
- · least sand nourishment requirements;

Currently in development:

Minimum engineering design guidelines to help in DA assessment and inform detailed design

Opportunity

Providing a long-term, holistic solution for Wamberal Beach that enhances and preserves the sandy beach environment and public amenity while also managing coastal hazard risks to people and property.

